Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 102: 58-67, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599286

RESUMO

Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.

2.
Environ Int ; 184: 108481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330748

RESUMO

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Assuntos
Poluentes Atmosféricos , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Biocombustíveis , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Material Particulado/análise , Carbono , Inflamação
3.
Food Chem Toxicol ; 184: 114438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191119

RESUMO

Toxicity testing of botanicals is challenging because of their chemical complexity and variability. Since botanicals may affect many different modes of action involved in neuronal function, we used microelectrode array (MEA) recordings of primary rat cortical cultures to screen 16 different botanical extracts for their effects on cell viability and neuronal network function in vitro. Our results demonstrate that extract materials (50 µg/mL) derived from goldenseal, milk thistle, tripterygium, and yohimbe decrease mitochondrial activity following 7 days exposure, indicative of cytotoxicity. Importantly, most botanical extracts alter neuronal network function following acute exposure. Extract materials (50 µg/mL) derived from aristolochia, ephedra, green tea, milk thistle, tripterygium, and usnea inhibit neuronal activity. Extracts of kava, kratom and yohimbe are particularly potent and induce a profound inhibition of neuronal activity at the low dose of 5 µg/mL. Extracts of blue cohosh, goldenseal and oleander cause intensification of the bursts. Aconite extract (5 µg/mL) evokes a clear hyperexcitation with a marked increase in the number of spikes and (network) bursts. The distinct activity patterns suggest that botanical extracts have diverse modes of action. Our combined data also highlight the applicability of MEA recordings for hazard identification and potency ranking of botanicals.


Assuntos
Hydrastis , Extratos Vegetais , Animais , Ratos , Microeletrodos , Extratos Vegetais/toxicidade , Testes de Toxicidade , Neurônios
4.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131793

RESUMO

MicroGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As µG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (µG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.


Assuntos
Células Cromafins , Hominidae , Ratos , Animais , Diamante , Células Cromafins/fisiologia , Microeletrodos , Exocitose/fisiologia
5.
Neurotoxicology ; 99: 226-243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926220

RESUMO

Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.


Assuntos
Rotas de Resultados Adversos , Doença de Parkinson , Transtornos Parkinsonianos , Praguicidas , Humanos , Doença de Parkinson/metabolismo , Cálcio/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Neurônios Dopaminérgicos , Praguicidas/efeitos adversos , Substância Negra
6.
mBio ; 14(2): e0024523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877033

RESUMO

Enterovirus D68 (EV-D68) is an emerging pathogen associated with mild to severe respiratory disease. Since 2014, EV-D68 is also linked to acute flaccid myelitis (AFM), causing paralysis and muscle weakness in children. However, it remains unclear whether this is due to an increased pathogenicity of contemporary EV-D68 clades or increased awareness and detection of this virus. Here, we describe an infection model of primary rat cortical neurons to study the entry, replication, and functional consequences of different EV-D68 strains, including historical and contemporary strains. We demonstrate that sialic acids are important (co)receptors for infection of both neurons and respiratory epithelial cells. Using a collection of glycoengineered isogenic HEK293 cell lines, we show that sialic acids on either N-glycans or glycosphingolipids can be used for infection. Additionally, we show that both excitatory glutamatergic and inhibitory GABA-ergic neurons are susceptible and permissive to historical and contemporary EV-D68 strains. EV-D68 infection of neurons leads to the reorganization of the Golgi-endomembranes forming replication organelles, first in the soma and later in the processes. Finally, we demonstrate that the spontaneous neuronal activity of EV-D68-infected neuronal network cultured on microelectrode arrays (MEA) is decreased, independent of the virus strain. Collectively, our findings provide novel insights into neurotropism and -pathology of different EV-D68 strains, and argue that it is unlikely that increased neurotropism is a recently acquired phenotype of a specific genetic lineage. IMPORTANCE Acute flaccid myelitis (AFM) is a serious neurological illness characterized by muscle weakness and paralysis in children. Since 2014, outbreaks of AFM have emerged worldwide, and they appear to be caused by nonpolio enteroviruses, particularly enterovirus-D68 (EV-D68), an unusual enterovirus that is known to mainly cause respiratory disease. It is unknown whether these outbreaks reflect a change of EV-D68 pathogenicity or are due to increased detection and awareness of this virus in recent years. To gain more insight herein, it is crucial to define how historical and circulating EV-D68 strains infect and replicate in neurons and how they affect their physiology. This study compares the entry and replication in neurons and the functional consequences on the neural network upon infection with an old "historical" strain and contemporary "circulating" strains of EV-D68.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Ratos , Animais , Humanos , Células HEK293 , Paralisia/complicações , Neurônios , Ácidos Siálicos
7.
Inhal Toxicol ; 35(3-4): 76-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36053669

RESUMO

The most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as the brain. Traditionally, such effects are tested using in vivo models. As an alternative, we have combined two in vitro systems, which are Air-Liquid-Interface (ALI) cultured alveolar cells (A549) and rat primary cortical cultures grown on multi-well microelectrode arrays. This allows us to assess the neurological effects of inhaled compounds. We have used exposure to e-cigarette vapor, containing nicotine, menthol, or vanillin to test the model. Our results show that ALI cultured A549 cells respond to the exposure with the production of cytokines (IL8 and GROalpha). Furthermore, nicotine, menthol, and vanillin were found on the basolateral side of the cell culture, which indicates their translocation. Upon transfer of the basolateral medium to the primary cortical culture, exposure-related changes in spontaneous electrical activity were observed correlating with the presence of e-liquid components in the medium. These clear neuromodulatory effects demonstrate the feasibility of combining continuous exposure of ALI cultured cells with subsequent exposure of neuronal cells to assess neurotoxicity. Although further optimization steps are needed, such a combination of methods is important to assess the neurotoxic effects of inhaled compounds realistically. As such, an approach like this could play a role in future mechanism-based risk assessment strategies.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Ratos , Animais , Nicotina/toxicidade , Vapor do Cigarro Eletrônico/farmacologia , Mentol , Células Epiteliais
8.
Neurotoxicology ; 94: 35-45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347328

RESUMO

Exposure to organophosphate (OP) insecticides has been related to several adverse health effects, including neurotoxicity. The primary insecticidal mode of action of OP insecticides relies on (irreversible) binding to acetylcholine esterase (AChE), with -oxon metabolites having a much higher potency for AChE inhibition than the parent compounds. However, OP insecticides can also have non-AChE-mediated effects, including changes in gene expression, neuroendocrine effects, disruption of neurite outgrowth and disturbance of the intracellular calcium (Ca2+) homeostasis. Since Ca2+ is involved in neurotransmission and neuronal development, our research aimed to assess the effects of two widely used OP insecticides, chlorpyrifos (CPF) and diazinon (DZ) and their respective -oxon metabolites, on intracellular Ca2+ homeostasis in human SH-SY5Y cells and rat primary cortical cultures. Furthermore, we assessed the acute and chronic effects of exposure to these compounds on neuronal network maturation and function in rat primary cortical cultures using microelectrode array (MEA) recordings. While inhibition of AChE appears to be the primary mode of action of oxon-metabolites, our data indicate that both parent OP insecticides (CPF and DZ) inhibit depolarization-evoked Ca2+ influx and neuronal activity at concentrations far below their sensitivity for AChE inhibition, indicating that inhibition of voltage-gated calcium channels is a common mode of action of OP insecticides. Notably, parent compounds were more potent than their oxon metabolites, with exposure to diazinon-oxon (DZO) having no effect on both neuronal activity and Ca2+ influx. Human SH-SY5Y cells were more sensitive to OP-induced inhibition of depolarization-evoked Ca2+ influx than rat cortical cells. Acute exposure to OP insecticides had more potent effects on neuronal activity than on Ca2+ influx, suggesting that neuronal activity parameters are especially sensitive to OP exposure. Interestingly, the effects of DZ and chlorpyrifos-oxon (CPO) on neuronal activity lessened after 48 h of exposure, while the potency of CPF did not differ over time. This suggests that neurotoxicity after exposure to different OPs has different effects over time and occurs at levels that are close to human exposure levels. In line with these results, chronic exposure to CPF during 10 days impaired neuronal network development, illustrating the need to investigate possible links between early-life OP exposure and neurodevelopmental disorders in children and highlighting the importance of non-AChE mediated mechanisms of neurotoxicity after OP exposure.


Assuntos
Clorpirifos , Inseticidas , Síndromes Neurotóxicas , Animais , Humanos , Ratos , Acetilcolinesterase/metabolismo , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Diazinon/toxicidade , Inseticidas/toxicidade , Inseticidas/metabolismo
9.
Toxicol Lett ; 373: 53-61, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375636

RESUMO

Tetrodotoxin (TTX) potently inhibits TTX-sensitive voltage-gated sodium (NaV) channels in nerve and muscle cells, potentially resulting in depressed neurotransmission, paralysis and death from respiratory failure. Since a wide range of pharmaceutical drugs is known to also act on NaV channels, the use of medicines could predispose individuals to a higher susceptibility towards TTX toxicity. We therefore first assessed the inhibitory effect of selected medicines that act on TTX-sensitive (Riluzole, Chloroquine, Fluoxetine, Valproic acid, Lamotrigine, Lidocaine) and TTX-resistant (Carbamazepine, Mexiletine, Flecainide) NaV channels on spontaneous neuronal activity of rat primary cortical cultures grown on microelectrode arrays (MEA). After establishing concentration-effect curves, binary mixtures of the medicines with TTX at calculated NOEC, IC20 and IC50 values were used to determine if pharmacodynamic interactions occur between TTX and these drugs on spontaneous neuronal activity. At IC20 and IC50 values, all medicines significantly increased the inhibitory effect of TTX on spontaneous neuronal activity of rat cortical cells in vitro. Subsequent experiments using human iPSC-derived neuronal co-cultures grown on MEAs confirmed the ability of selected medicines (Carbamazepine, Flecainide, Riluzole, Lidocaine) to inhibit spontaneous neuronal activity. Despite the need for additional experiments using human iPSC-derived neuronal co-cultures, our combined data already highlight the importance of identifying and including vulnerable risk groups in the risk assessment of TTX.


Assuntos
Tetrodotoxina , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Ratos , Carbamazepina/farmacologia , Flecainida , Lidocaína/toxicidade , Riluzol/farmacologia , Tetrodotoxina/farmacologia , Tetrodotoxina/toxicidade , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
12.
Clin Toxicol (Phila) ; 60(1): 71-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34121559

RESUMO

INTRODUCTION: The accidental ingestion of diluted household descaling products by infants is a phenomenon that poison control centers regularly encounter. Feeding infants with baby milk prepared with water from electric kettles still containing descaler is a common way of exposure. This study aimed to determine the risks related to ingestion of (diluted) descalers by infants. METHODS: pH measurements were performed using acetic acid and three different commercially available electric kettle descalers. The pH of different dilutions was measured in the absence or presence of baby milk powder. In addition, an overview was made of pH values of different electric kettle descalers as given by the product information of the manufacturer. Finally, a simple pharmacokinetic (PK) model was used to predict changes in blood pH in infants after ingestion of acetic acid, which is the most commonly used descaler. RESULTS: Several commercially available electric kettle descalers have a pH <2. Even after diluting such descalers up to 10 times the pH can remain low. The addition of milk powder increases the pH of descalers containing weaker acids, with a pH >1.5, while descalers with stronger acids and pH <1 show little pH increase after the addition of milk powder. Finally, a simple PBPK model for the ingestion of acetic acid predicted that the ingestion of larger amounts of acetic acid (>1000 mg) by an infant could result in relevant changes in blood pH. CONCLUSIONS: Commercially available electric kettle descaling products may pose a health risk to infants in case of accidental ingestion since the pH of some of these products can be very low, even when diluted 10-times or in the presence of baby milk powder. Oral exposure of infants to the common descaler acetic acid, after accidental preparation of baby milk with cleaning vinegar, will probably not result in serious local effects, but changes in blood pH cannot be excluded when larger amounts of acetic acid are ingested.


Assuntos
Acetatos , Produtos Domésticos , Ingestão de Alimentos , Humanos , Lactente , Centros de Controle de Intoxicações
13.
Curr Protoc ; 1(6): e158, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34152700

RESUMO

Neurotoxicity testing of chemicals, drug candidates, and environmental pollutants still relies on extensive in vivo studies that are very costly, time-consuming, and ethically debated due to the large number of animals typically used. Currently, rat primary cortical cultures are widely used for in vitro neurotoxicity studies, as they closely resemble the in vitro brain with respect to the diversity of cell types, their physiological functions, and the pathological processes that they undergo. Common in vitro assays for neurotoxicity screening often focus on very target-specific endpoints such as morphological, biochemical, or electrophysiological changes, and such narrow focus can hamper translation and interpretation. Microelectrode array (MEA) recordings provide a non-invasive platform for extracellular recording of electrical activity of cultured neuronal cells, thereby enabling the evaluation of changes in neuronal (network) function as a sensitive and integrated endpoint for neurotoxicity screening. Here, we describe an in vitro approach for assessing changes in neuronal network function as a measure for neurotoxicity, using rat primary cortical cultures grown on MEAs. We provide a detailed protocol for the culture of rat primary cortical cells, and describe several experimental procedures to address acute, subchronic, and chronic exposure scenarios. We additionally describe the steps for processing and analyzing MEA and cell viability data. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and culture of rat primary cortical cells on 48-well MEA plates Support Protocol 1: Pretreatment and washing of 48-well MEA plates before first use or for re-use Support Protocol 2: Coating of 48-well MEA plates with 0.1% PEI solution Basic Protocol 2: MEA measurements during acute exposure Alternate Protocol 1: MEA measurements during subchronic exposure Alternate Protocol 2: MEA measurements during chronic exposure Support Protocol 3: Determination of cell viability after MEA experiments Basic Protocol 3: MEA data processing Basic Protocol 4: Analyzing MEA experiments after acute and subchronic exposure Alternate Protocol 3: Analyzing MEA experiments after chronic exposure.


Assuntos
Córtex Cerebral , Síndromes Neurotóxicas , Animais , Células Cultivadas , Microeletrodos , Neurônios , Ratos
14.
Environ Int ; 156: 106718, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166876

RESUMO

Contamination of aircraft cabin air can result from leakage of engine oils and hydraulic fluids into bleed air. This may cause adverse health effects in cabin crews and passengers. To realistically mimic inhalation exposure to aircraft cabin bleed-air contaminants, a mini bleed-air contaminants simulator (Mini-BACS) was constructed and connected to an air-liquid interface (ALI) aerosol exposure system (AES). This unique "Mini-BACS + AES" setup provides steady conditions to perform ALI exposure of the mono- and co-culture lung models to fumes from pyrolysis of aircraft engine oils and hydraulic fluids at respectively 200 °C and 350 °C. Meanwhile, physicochemical characteristics of test atmospheres were continuously monitored during the entire ALI exposure, including chemical composition, particle number concentration (PNC) and particles size distribution (PSD). Additional off-line chemical characterization was also performed for the generated fume. We started with submerged exposure to fumes generated from 4 types of engine oil (Fume A, B, C, and D) and 2 types of hydraulic fluid (Fume E and F). Following submerged exposures, Fume E and F as well as Fume A and B exerted the highest toxicity, which were therefore further tested under ALI exposure conditions. ALI exposures reveal that these selected engine oil (0-100 mg/m3) and hydraulic fluid (0-90 mg/m3) fumes at tested dose-ranges can impair epithelial barrier functions, induce cytotoxicity, produce pro-inflammatory responses, and reduce cell viability. Hydraulic fluid fumes are more toxic than engine oil fumes on the mass concentration basis. This may be related to higher abundance of organophosphates (OPs, ≈2800 µg/m3) and smaller particle size (≈50 nm) of hydraulic fluid fumes. Our results suggest that exposure to engine oil and hydraulic fluid fumes can induce considerable lung toxicity, clearly reflecting the potential health risks of contaminated aircraft cabin air.


Assuntos
Aeronaves , Exposição por Inalação , Gases/análise , Exposição por Inalação/efeitos adversos , Pulmão/química , Organofosfatos
15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836560

RESUMO

New therapeutic approaches to resolve persistent pain are highly needed. We tested the hypothesis that manipulation of cytokine receptors on sensory neurons by clustering regulatory cytokine receptor pairs with a fusion protein of interleukin (IL)-4 and IL-10 (IL4-10 FP) would redirect signaling pathways to optimally boost pain-resolution pathways. We demonstrate that a population of mouse sensory neurons express both receptors for the regulatory cytokines IL-4 and IL-10. This population increases during persistent inflammatory pain. Triggering these receptors with IL4-10 FP has unheralded biological effects, because it resolves inflammatory pain in both male and female mice. Knockdown of both IL4 and IL10 receptors in sensory neurons in vivo ablated the IL4-10 FP-mediated inhibition of inflammatory pain. Knockdown of either one of the receptors prevented the analgesic gain-of-function of IL4-10 FP. In vitro, IL4-10 FP inhibited inflammatory mediator-induced neuronal sensitization more effectively than the combination of cytokines, confirming its superior activity. The IL4-10 FP, contrary to the combination of IL-4 and IL-10, promoted clustering of IL-4 and IL-10 receptors in sensory neurons, leading to unique signaling, that is exemplified by activation of shifts in the cellular kinome and transcriptome. Interrogation of the potentially involved signal pathways led us to identify JAK1 as a key downstream signaling element that mediates the superior analgesic effects of IL4-10 FP. Thus, IL4-10 FP constitutes an immune-biologic that clusters regulatory cytokine receptors in sensory neurons to transduce unique signaling pathways required for full resolution of persistent inflammatory pain.


Assuntos
Citocinas/metabolismo , Dor/tratamento farmacológico , Receptores de Citocinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/metabolismo
16.
J Aerosol Sci ; 153: 105703, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658726

RESUMO

Inhalation exposure to environmental and occupational aerosol contaminants is associated with many respiratory health problems. To realistically mimic long-term inhalation exposure for toxicity testing, lung epithelial cells need to maintained and exposed under air-liquid interface (ALI) conditions for a prolonged period of time. In addition, to study cellular responses to aerosol particles, lung epithelial cells have to be co-cultured with macrophages. To that aim, we evaluated human bronchial epithelial Calu-3, 16HBE14o- (16HBE), H292, and BEAS-2B cell lines with respect to epithelial morphology, barrier function and cell viability under prolonged ALI culture conditions. Only the Calu-3 cells can retain the monolayer structure and maintain a strong tight junction under long-term ALI culture at least up to 2 weeks. As such, Calu-3 cells were applied as the structural barrier to create co-culture models with human monocyte-derived macrophages (MDMs) and THP-1 derived macrophages (TDMs). Adhesion of macrophages onto the epithelial monolayer was allowed for 4 h with a density of 5 × 104 macrophages/cm2. In comparison to the Calu-3 mono-culture model, Calu-3 + TDM and Calu-3 + MDM co-culture models showed an increased sensitivity in inflammatory responses to lipopolysaccharide (LPS) aerosol at Day 1 of co-culture, with the Calu-3 + MDM model giving a stronger response than Calu-3 + TDM. Therefore, the epithelial monolayer integrity and increased sensitivity make the Calu-3 + MDM co-culture model a preferred option for ALI exposure to inhaled aerosols for toxicity testing.

17.
Expert Opin Drug Metab Toxicol ; 17(8): 1007-1017, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33586568

RESUMO

INTRODUCTION: The process of chemical risk assessment traditionally relies on animal experiments and associated default uncertainty factors to account for interspecies and interindividual differences. To work toward a more precise and personalized risk assessment, these uncertainty factors should be refined and replaced by chemical-specific adjustment factors (CSAFs). AREAS COVERED: This concise review discusses alternative (in vitro/in silico) approaches that can be used to assess interspecies and interindividual differences in toxicodynamics, ranging from targeted to more integrated approaches. Although data are available on interspecies differences, the increasing use of human-induced pluripotent stem cell (hiPSC)-derived neurons may provide opportunities to also assess interindividual variability in neurotoxicity. More integrated approaches, like adverse outcome pathways (AOPs) can provide a more quantitative understanding of the toxicodynamics of a chemical. EXPERT OPINION: To improve chemical risk assessment, refinement of uncertainty factors is crucial. In vitro and in silico models can facilitate the development of CSAFs, but still these models cannot always capture the complexity of the in vivo situation, thereby potentially hampering regulatory acceptance. The combined use of more integrated approaches, like AOPs and physiologically based kinetic models, can aid in structuring data and increasing suitability of alternative approaches for regulatory purposes.


Assuntos
Simulação por Computador , Síndromes Neurotóxicas/etiologia , Medição de Risco/métodos , Animais , Humanos , Técnicas In Vitro/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Especificidade da Espécie , Incerteza
18.
Expert Opin Drug Metab Toxicol ; 17(8): 923-936, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33595380

RESUMO

INTRODUCTION: The increasing incidence of mental illnesses and neurodegenerative diseases results in a high demand for drugs targeting the central nervous system (CNS). These drugs easily reach the CNS, have a high affinity for CNS targets, and are prone to cause seizures as an adverse drug reaction. Current seizure liability assessment heavily depends on in vivo or ex vivo animal models and is therefore ethically debated, labor intensive, expensive, and not always predictive for human risk. AREAS COVERED: The demand for CNS drugs urges the development of alternative safety assessment strategies. Yet, the complexity of the CNS hampers reliable detection of compound-induced seizures. This review provides an overview of the requirements of in vitro seizure liability assays and highlights recent advances, including micro-electrode array (MEA) recordings using rodent and human cell models. EXPERT OPINION: Successful and cost-effective replacement of in vivo and ex vivo models for seizure liability screening can reduce animal use for drug development, while increasing the predictive value of the assays, particularly if human cell models are used. However, these novel test strategies require further validation and standardization as well as additional refinements to better mimic the human in vivo situation and increase their predictive value.


Assuntos
Fármacos do Sistema Nervoso Central/efeitos adversos , Modelos Biológicos , Convulsões/induzido quimicamente , Animais , Fármacos do Sistema Nervoso Central/administração & dosagem , Análise Custo-Benefício , Desenvolvimento de Medicamentos/métodos , Humanos , Microeletrodos , Valor Preditivo dos Testes , Convulsões/diagnóstico
19.
Artigo em Inglês | MEDLINE | ID: mdl-35010571

RESUMO

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Encéfalo , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
20.
PLoS Biol ; 18(11): e3000904, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33156822

RESUMO

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Assuntos
Antivirais/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Enterovirus/efeitos dos fármacos , Proteínas não Estruturais Virais/efeitos dos fármacos , Antígenos Virais , Proteínas de Transporte/metabolismo , Descoberta de Drogas/métodos , Enterovirus/patogenicidade , Infecções por Enterovirus/virologia , Fluoxetina/farmacologia , Células HeLa , Humanos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...